3.426 \(\int (a+b \cos (c+d x))^2 \sec ^5(c+d x) \, dx\)

Optimal. Leaf size=110 \[ \frac {\left (3 a^2+4 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {\left (3 a^2+4 b^2\right ) \tan (c+d x) \sec (c+d x)}{8 d}+\frac {a^2 \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {2 a b \tan ^3(c+d x)}{3 d}+\frac {2 a b \tan (c+d x)}{d} \]

[Out]

1/8*(3*a^2+4*b^2)*arctanh(sin(d*x+c))/d+2*a*b*tan(d*x+c)/d+1/8*(3*a^2+4*b^2)*sec(d*x+c)*tan(d*x+c)/d+1/4*a^2*s
ec(d*x+c)^3*tan(d*x+c)/d+2/3*a*b*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {2789, 3767, 3012, 3768, 3770} \[ \frac {\left (3 a^2+4 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {\left (3 a^2+4 b^2\right ) \tan (c+d x) \sec (c+d x)}{8 d}+\frac {a^2 \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac {2 a b \tan ^3(c+d x)}{3 d}+\frac {2 a b \tan (c+d x)}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^2*Sec[c + d*x]^5,x]

[Out]

((3*a^2 + 4*b^2)*ArcTanh[Sin[c + d*x]])/(8*d) + (2*a*b*Tan[c + d*x])/d + ((3*a^2 + 4*b^2)*Sec[c + d*x]*Tan[c +
 d*x])/(8*d) + (a^2*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (2*a*b*Tan[c + d*x]^3)/(3*d)

Rule 2789

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Dist[(2*c*d)/b
, Int[(b*Sin[e + f*x])^(m + 1), x], x] + Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c,
 d, e, f, m}, x]

Rule 3012

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*Cos[e
+ f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x))^2 \sec ^5(c+d x) \, dx &=(2 a b) \int \sec ^4(c+d x) \, dx+\int \left (a^2+b^2 \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx\\ &=\frac {a^2 \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {1}{4} \left (3 a^2+4 b^2\right ) \int \sec ^3(c+d x) \, dx-\frac {(2 a b) \operatorname {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac {2 a b \tan (c+d x)}{d}+\frac {\left (3 a^2+4 b^2\right ) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a^2 \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {2 a b \tan ^3(c+d x)}{3 d}+\frac {1}{8} \left (3 a^2+4 b^2\right ) \int \sec (c+d x) \, dx\\ &=\frac {\left (3 a^2+4 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {2 a b \tan (c+d x)}{d}+\frac {\left (3 a^2+4 b^2\right ) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a^2 \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {2 a b \tan ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.28, size = 82, normalized size = 0.75 \[ \frac {3 \left (3 a^2+4 b^2\right ) \tanh ^{-1}(\sin (c+d x))+\tan (c+d x) \left (3 \left (3 a^2+4 b^2\right ) \sec (c+d x)+6 a^2 \sec ^3(c+d x)+16 a b \left (\tan ^2(c+d x)+3\right )\right )}{24 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^2*Sec[c + d*x]^5,x]

[Out]

(3*(3*a^2 + 4*b^2)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(3*(3*a^2 + 4*b^2)*Sec[c + d*x] + 6*a^2*Sec[c + d*x]^3
 + 16*a*b*(3 + Tan[c + d*x]^2)))/(24*d)

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 133, normalized size = 1.21 \[ \frac {3 \, {\left (3 \, a^{2} + 4 \, b^{2}\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (3 \, a^{2} + 4 \, b^{2}\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (32 \, a b \cos \left (d x + c\right )^{3} + 16 \, a b \cos \left (d x + c\right ) + 3 \, {\left (3 \, a^{2} + 4 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 6 \, a^{2}\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/48*(3*(3*a^2 + 4*b^2)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(3*a^2 + 4*b^2)*cos(d*x + c)^4*log(-sin(d*x +
 c) + 1) + 2*(32*a*b*cos(d*x + c)^3 + 16*a*b*cos(d*x + c) + 3*(3*a^2 + 4*b^2)*cos(d*x + c)^2 + 6*a^2)*sin(d*x
+ c))/(d*cos(d*x + c)^4)

________________________________________________________________________________________

giac [B]  time = 0.63, size = 258, normalized size = 2.35 \[ \frac {3 \, {\left (3 \, a^{2} + 4 \, b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (3 \, a^{2} + 4 \, b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (15 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 48 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 12 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 9 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 80 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 9 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 80 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 48 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 12 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*sec(d*x+c)^5,x, algorithm="giac")

[Out]

1/24*(3*(3*a^2 + 4*b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(3*a^2 + 4*b^2)*log(abs(tan(1/2*d*x + 1/2*c) -
1)) + 2*(15*a^2*tan(1/2*d*x + 1/2*c)^7 - 48*a*b*tan(1/2*d*x + 1/2*c)^7 + 12*b^2*tan(1/2*d*x + 1/2*c)^7 + 9*a^2
*tan(1/2*d*x + 1/2*c)^5 + 80*a*b*tan(1/2*d*x + 1/2*c)^5 - 12*b^2*tan(1/2*d*x + 1/2*c)^5 + 9*a^2*tan(1/2*d*x +
1/2*c)^3 - 80*a*b*tan(1/2*d*x + 1/2*c)^3 - 12*b^2*tan(1/2*d*x + 1/2*c)^3 + 15*a^2*tan(1/2*d*x + 1/2*c) + 48*a*
b*tan(1/2*d*x + 1/2*c) + 12*b^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d

________________________________________________________________________________________

maple [A]  time = 0.10, size = 142, normalized size = 1.29 \[ \frac {a^{2} \left (\sec ^{3}\left (d x +c \right )\right ) \tan \left (d x +c \right )}{4 d}+\frac {3 a^{2} \sec \left (d x +c \right ) \tan \left (d x +c \right )}{8 d}+\frac {3 a^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8 d}+\frac {4 a b \tan \left (d x +c \right )}{3 d}+\frac {2 a b \tan \left (d x +c \right ) \left (\sec ^{2}\left (d x +c \right )\right )}{3 d}+\frac {b^{2} \tan \left (d x +c \right ) \sec \left (d x +c \right )}{2 d}+\frac {b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2*sec(d*x+c)^5,x)

[Out]

1/4*a^2*sec(d*x+c)^3*tan(d*x+c)/d+3/8*a^2*sec(d*x+c)*tan(d*x+c)/d+3/8/d*a^2*ln(sec(d*x+c)+tan(d*x+c))+4/3*a*b*
tan(d*x+c)/d+2/3/d*a*b*tan(d*x+c)*sec(d*x+c)^2+1/2/d*b^2*tan(d*x+c)*sec(d*x+c)+1/2/d*b^2*ln(sec(d*x+c)+tan(d*x
+c))

________________________________________________________________________________________

maxima [A]  time = 0.67, size = 144, normalized size = 1.31 \[ \frac {32 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a b - 3 \, a^{2} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, b^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{48 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

1/48*(32*(tan(d*x + c)^3 + 3*tan(d*x + c))*a*b - 3*a^2*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4
- 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x + c) - 1)) - 12*b^2*(2*sin(d*x + c)/(sin(d*x
 + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)))/d

________________________________________________________________________________________

mupad [B]  time = 3.10, size = 184, normalized size = 1.67 \[ \frac {\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (\frac {3\,a^2}{4}+b^2\right )}{d}+\frac {\left (\frac {5\,a^2}{4}-4\,a\,b+b^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {3\,a^2}{4}+\frac {20\,a\,b}{3}-b^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (\frac {3\,a^2}{4}-\frac {20\,a\,b}{3}-b^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {5\,a^2}{4}+4\,a\,b+b^2\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))^2/cos(c + d*x)^5,x)

[Out]

(atanh(tan(c/2 + (d*x)/2))*((3*a^2)/4 + b^2))/d + (tan(c/2 + (d*x)/2)^5*((20*a*b)/3 + (3*a^2)/4 - b^2) + tan(c
/2 + (d*x)/2)*(4*a*b + (5*a^2)/4 + b^2) + tan(c/2 + (d*x)/2)^7*((5*a^2)/4 - 4*a*b + b^2) - tan(c/2 + (d*x)/2)^
3*((20*a*b)/3 - (3*a^2)/4 + b^2))/(d*(6*tan(c/2 + (d*x)/2)^4 - 4*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^6
 + tan(c/2 + (d*x)/2)^8 + 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2*sec(d*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________